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LE"ER TO THE EDITOR 

On the nature of the critical point in the three-spin triangular 
Ising model 

Michael N Barber 
Department of Applied Mathematics, University of New South Wales, PO Box 1, Kensing- 
ton, NSW 2033, Australia 

Received 15 September 1976 

Abstract. The nature of the critical point in the triangular Ising model with pure triplet 
interactions is discussed. In particular, it is shown that the correction terms to the asymptotic 
power law behaviour of thermodynamic quantities require the existence of a third relevant 
scaling field in accord with recent renormalization group calculations. The exponent of this 
field is found to be ys = 7/8. 

Two groups (den Nijs et a1 1976, Imbro and Hemmer 1976) have recently applied 
renormalization group techniques to elucidate the critical behaviour of the Ising model 
on the triangular lattice with both pair and triplet interactions. Although these 
calculations are only approximate and, indeed, of relatively poor numerical accuracy, 
the qualitative behaviour revealed by each is very similar. In particular, both investiga- 
tions found that the pure three-spin limit (Baxter and Wu 1973) corresponds to a fixed 
point with three relevant eigenvalues. In this letter we explore some of the conse- 
quences of this conclusion. Most significantly, we find that the corrections to the 
asymptotic behaviour of known or conjectured thermodynamic quantities can only be 
accounted for if the basic conclusion is valid. These correction terms can then be used to 
determine the value of the third eigenvalue explicitly. 

To be more specific we consider an Ising model on a triangular lattice with reduced 
Hamiltonian 

H=K1 c Ui+KJ cTiITj+KK, c O - i q T k ,  (1) 

where the first sum runs over all sites of the lattice, the second over all nearest- 
neighbour bonds and the third over all elementary triangles of the lattice. As usual, we 
absorb a factor of -p (= -l/k,T) into the definition of H. The system described by (1) 
is known to exhibit at least three critical points with distinct sets of critical exponents. 
At K 1  = K3 = 0, K2 = K2,c = In 3 -- 0.274, the specific heat diverges logarithmically 
(Wannier 1950, Houtappel 1950), while at K1 = K2 = 0, K3 = f K3,c = f; In(1 +d2) = 
f0.4407, the specific heat exponent has the value (Y = 2/3 (Baxter and Wu 1973, 
1974). Presumably these two distinct types of critical behaviour correspond to different 
fixed points. One of the objectives of the renormalization group calculations referred to 
above was to investigate the domains of attraction or critical surfaces associated with 
these fixed points and to explore the critical behaviour of (1) in the full space 
Wl, K2, K3). 
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The salient findings of den Nijs et a1 (1976) and Imbro and Hemmer (1976) can be 
summarized as follows. Renormalization group transformations of (1) do exhibit three 
non-trivial fixed points, which can be identified with the exactly known critical points. 
Following Imbro and Hemmer (1976) we shall refer to these as the Onsager fixed point 
(for which K:#O, KT=K;=O)  and the Baxter-Wu fixed points (KT=KT=O, 
Kf # 0). The former has two relevant eigenvalues, while the Baxter-Wu points have 
three. Thus in the space (Kl, K2, K3) ,  (1) exhibits a critical line passing through the 
Onsager fixed point and terminating at the two Baxter-Wu points. All points on this 
line, except for the two end points, map to the Onsager fixed point and thus exhibit 
conventional Ising-like critical behaviour. 

In the vicinity of one of the Baxter-Wu fixed points, the singular part of the free 
energy can be written in the scaled form (see, e.g., den Nijs et al 1976) 

(3) 

A =  Yh/Yt, A3 = Y3/Yt. (4) 

where 

In these expressions g,, gh, g3 denote the three relevant non-linear scaling fields 
associated with the fixed point and y,, y h ,  y3 their respective critical exponents, i.e. 
under a renormalization group transformation with spatial rescaling factor 1, g, trans- 
forms as g,ly-. In terms of the basic coupling constants these fields can be expanded 
(Wegner 1972) as 

g t=K, -K , , ,+ .  . . , 
g,=K1+uKp+.  . . , 
g3=Kz+bKi+. . . , 

(5) 

where by symmetry the corrections are at least quadratic in K1, K 2  and AK3 = K3 - K3,= 
(see den Nijs et a1 1976). Thus y, and y h  are determined from standard critical 
exponents, 

y,= 1/(2-a)=3/2,  yh=2-ytP = 1518, (6) 

where we have used the result of Baxter and Wu (1973, 1974) for a and the very 
plausible conjecture of Baxter et a1 (1975) for p. The exponent y3 does not influence 
the asymptotic critical behaviour. However, as we shall see, it does affect correction 
terms. 

Explicitly we consider the critical behaviour of 

and 

both of which vanish identically for K3 s K3, ,  (i.e. 7'3 T3,,) and are non-zero for 
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K3 > K3,c ( T <  T3,J.  Differentiating (2) implies that 

MO = Igtlg-”Q,(O, 0)  + bJgtlg-A3Q,(0, 0)  + . . . 
Po = f a  Igtl$-AQU (0 ,O)  + flg,13-A3Qu (0,O) + . . . , 

where Q,(O, 0) and Q,(O, 0) denote respectively the partial derivatives of Q(u, U )  with 
respect to U and U evaluated at U = U = 0. 

The following conclusions are EOW immediate: 
(i) MO and Po both vanish at K3,c with the same exponent p = 4 / 3 - A =  1/12. 

(iii) Unless Q,(O, O)=O,  the exponent A3 and hence y3 will be evident in 
the corrections to the leading power law behaviour, although in principle 
there could be other terms arising from corrections to (2). Moreover, since 
yt>y3>0 ,  the exponent, U, of the correction term must be in the interval 
4/3 > w > 1/3. 

While neither MO nor Po has yet been evaluated exactly, Baxter et a1 (1975) have 
conjectured very plausible functional forms valid for the whole range K3,c4 K < 00. 

Expanding these results we find 

+ 0 ( ~ ~ / ~ ) 1  (12) 

(13) 

(14) 

~ ~ = 2 1 / 3 ~ 1 / 1 2 [ 1 + ~ ~ - 2 - 4 / 3 ~ 2 / 3  

po = $211/6 E 1/12 [l+;E+O(E2)], 

where 

E = 1 - (sinh 2 K J ’  = O(K3 - K3,J.  

Equations (12) and (13) immediately confirm the first conclusion above, while (1 1) 
implies that 

U = 2 J 2 =  2 , 8 2 8 . .  . . (15) 
The corresponding estimates of den Nijs eta1 (1976) are 2.815 from a four-cell cluster 
approximation and 2.737 from a six-cell approximation, which agree rather well with 
(15). Imbro and Hemmer ( 1976) do not report a value for a. 

If we attribute the linear terms inside the parentheses in (12) to quadratic correc- 
tions to the scaling fields (51, comparison of (12) with (9) yields 

A , = 7 / 1 2 .  i.e. y3=7 /8 .  (16) 
The problem now is the absence of any similar correction term through O(E’) in Po. The 
only feasible way out of this appears to be to modify (2) by assuming 

-Pf* = lR,IJ/3Q(U, U) + Igt12Q1(u, U )  (17) 

Q,(o,O)+aQlU(0,O)=0, (18) 

with U = g3/lg1l7”’. If we now demand that 

the correction term of O ( E ~ / ~ )  in Po vanishes. The corresponding term in MO has 
amplitude 

(19) 60, (0, 0)  + ai, (0, 0)  = -1, 
on comparing with (12). 
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Unfortunately it does not seem possible to independently determine either Q, (0,O) 
or Ql,(O, 0) and so determine b. One possibility is to attempt to match higher-order 
correction terms in the expansions (12) and (13) to (18). However, it seems impossible 
to unravel from these terms the contributions arising directly from (18) and those 
arising from the non-linear corrections in (5 ) .  In addition, if one expands the specific 
heat result of Baxter and Wu (1973, 1974), (18) only encompasses the specific heat 
correction terms if it is again extended to include a term of order Igtls/3. 

This final conclusion suggests that the asymptotic behaviour of -Pfs in the vicinity of 
K3 = K3,0 K1 = K 2  = 0 is actually of the form 

(20) 4/3  - -Pfs = lgtl Q ( u ,  0, w), 
with 

= ghlgtl-5/12, 0 = g31gtl-7’12, W =  giIgt12/3, (21) 
where gi is a non-vanishing irrelevant field with exponent yi = -1. Since different values 
of such a field do not affect the critical properties, this suggests that the critical surface 
associated with the Baxter-Wu type fixed points does not consist of a sole point as found 
by den Nijs eta1 (1976) and Imbro and Hemmer (1976). Clearly improved renormali- 
zation group calculations are required to explore this aspect in more detail. 

The exact nature of the critical surface is however irrelevant to our basic conclusion, 
that the corrections to the asymptotic power law behaviour of Mo(K3) and Po(K3) 
appear to be only consistent with a conventional scaling ansatz if the Baxter-Wu critical 
point is associated with a fixed point with three relevant eigenvalues, 

Y t  = 312, Y h  = 15/89 y3 = 718. (22) 
This value for y3 is rather larger than the estimate of y3 = 0.3 made by den Nijs et a1 
(1976) and rather less than that found by Imbro and Hemmer (1976) (y3-1.2). 
Presumably this discrepancy reflects the basic inaccuracy of these calculations and 
should be decreased by more effective approximations. 
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